Derivation of Local Volatility
by Fabrice Douglas Rouah
www.FRouah.com
www. Volopta.com

The derivation of local volatility is outlined in many papers and textbooks
(such as the one by Jim Gatheral [1]), but in the derivations many steps are left
out. In this Note we provide two derivations of local volatility.

1. The derivation by Dupire [2] that uses the Fokker-Planck equation.

2. The derivation by Derman et al. [3] of local volatility as a conditional
expectation.

We also present the derivation of local volatility from Black-Scholes implied
volatility, outlined in [1]. We will derive the following three equations that

involve local volatility o = o(S;,t) or local variance vy, = 2.

1. The Dupire equation in its most general form (appears in [1] on page 9)
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2. The equation by Derman et al. [3] for local volatility as a conditional

expected value (appears with ¢r = 0 in [3])
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3. Local volatility as a function of Black-Scholes implied volatility, ¥ =
Y(K,T) (appears in [1]) expressed here as the local variance vy,

v, = oL T (3)
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where w = X(K,T)?T is the Black-Scholes total implied variance and y =
In FﬁT where Fpr = exp ( fOT Mtdt) is the forward price with p, = r; — q; (risk free

rate minus dividend yield). Alternatively, local volatility can also be expressed
in terms of ¥ as
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Solving for the local variance in Equation (1), we obtain
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If we set the risk-free rate rr and the dividend yield ¢r each equal to zero,
Equations (1) and (2) can each be solved to yield the same equation involving
local volatility, namely
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The local volatility is then vy, = /02(K,T). In this Note the derivation of

these equations are all explained in detail.

1 Local Volatility Model for the Underlying

The underlying S; follows the process

dS; = Sidt + (S, t)S:dW; (6)
= (re — q¢) Sedt + (S, 1) SpdW,.

We sometimes drop the subscript and write dS = uSdt + 0 SdW where ¢ =
o(S¢,t). We need the following preliminaries:

e Discount factor P(t,T) = exp (— ftT rsds) .

e Fokker-Planck equation. Denote by f(S¢,t) the probability density func-
tion of the underlying price S; at time ¢. Then f satisfies the equation
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e Time-t price of European call with strike K, denoted C' = C(S;, K)
C = P(LT)E[(Sr - K)'] (®)
= PtTE (St — K)l(sr>x0)
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where 1(g, k) is the Heaviside function and where £ [-] = E'[-|F]. In the
all the integrals in this Note, since the expectations are taken for the underlying
price at t = T it is understood that S = Sy, f(S,T) = f(Sr,T) and dS = dSr.
We sometimes omit the subscript for notational convenience.

2 Derivation of the General Dupire Equation (1)

2.1 Required Derivatives

We need the following derivatives of the call C(S, ).



e First derivative with respect to strike
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e Second derivative with respect to strike
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We have assumed that Slim f(S,T)=0.

e First derivative with respect to maturity—use the chain rule
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2.2 Main Equation
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In Equation (12) substitute the Fokker-Planck equation (7) for 3—{ att=1T

Z%HTC = P(LT)/KOO(ST—K)X (13)

2
{;S [ SF(S,T)] + %% 0252 £(5.T)] } ds.

This is the main equation we need because it is from this equation that the
Dupire local volatility is derived. In Equation (13) have two integrals to evaluate
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Before evaluating these two integrals we need the following two identities.



2.3 Two Useful Identities
2.3.1 First Identity

From the call price Equation (8), we obtain
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From the expression for g—l(’; in Equation (9) we obtain
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Substitute back into Equation (15) and re-arrange terms to obtain the first
identity
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2.3.2 Second Identity

We use the expression for ngC; in Equation (10) to obtain the second identity
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2.4 Evaluating the Integrals

We can now evaluate the integrals I; and Iy defined in Equation (14).

2.4.1 First integral

Use integration by parts with u = Sy — K,v' = 1,v' = % [Sf(S,T)],v =
Sf(S.T)

L= [up(Sr— K)Sof(S. D= - /K " Sp(s.1)ds
~ [0—0] _”T/K SF(S,T)dS.

We have assumed Slim (S —K)Sf(S,T) =0. Substitute the first identity (16)
to obtain the first integral Iy

_ —kgC pr K 8£
h=per) T P10k (18)




2.4.2 Second integral

I{?se integration by parts with u = S — K,v/ = 1,0v' = 887;2 [UQSQf(S, T)] SO =
% [02S2 f(S, 1))
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where 02 = o(K,T)2. We have assumed that SILH;O% {02S8%f(S,T)} = 0.
Substitute the second identity (17) for f(K,T) to obtain the second integral I
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2.5 Obtaining the Dupire Equation

We can now evaluate the main Equation (13) which we write as
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Substitute for I; from Equation (18) and for I from Equation (19)
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Substitute for pp = rp — g (risk free rate minus dividend yield) to obtain the
Dupire equation (1)
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Solve for 02 = o(K,T)? to obtain the Dupire local variance in its general form
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Dupire [2] assumes zero interest rates and zero dividend yield. Hence rp =
gr = 0 so that the underlying process is dS; = o(S¢,t)S:dW;. We obtain
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which is Equation (5).



3 Derivation of Local Volatility as an Expected
Value, Equation (2)

We need the following preliminaries, all of which are easy to show

%(S—K)+=1(5>K) %1(S>K) =0(S—-K)
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In the table, §(-) denotes the Dirac delta function. Now define the function
f(St,T) as
F(S2.T) = P(t,T)(Sr — K)*.
Recall the process for S; is given by Equation (6). By Ito’s Lemma, f follows
the process
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Now the partial derivatives are
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Substitute them into Equation (20)
df = P@T)x (21)
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Consider the first two terms of (21), which can be written as
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When we take the expected value of Equation (21), the stochastic term drops
out since E [dWr] = 0. Hence we can write the expected value of (21) as
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so that
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Using the second line in Equation (8), we can write
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so Equation (23) becomes
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where we have substituted —5% for P(t,T)E[1(s,>r)]. The last term in the
last line of Equation (24) can be written
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where we have substituted gj((’; for P(t,T)E[0(ST — K)]. We obtain the final
result, Equation (2)
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When ry = gr = 0 we can re-arrange the result to obtain
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which, again, is Equation (5). Hence when the dividend and interest rate are
both zero, the derivation of local volatility using Dupire’s approach and the
derivation using conditional expectation produce the same result.

4 Derivation of Local Volatility From Implied
Volatility, Equation (3)

To express local volatility in terms of implied volatility, we need the three deriv-

atives g—g,g—g, and gj(cg that appear in Equation (1), but expressed in terms of




implied volatility. Following Gatheral [1] we define the log-moneyness
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where Fr = Sgexp ( fOT utdt) is the forward price (u, = 1+ — ¢4, risk free rate

minus dividend yield) and K is the strike price, and the "total" Black-Scholes

implied variance
w = N(K,T)*T

where 3(K,T) is the implied volatility. The Black-Scholes call price can then
be written as

Cps (S0, K, X (K,T),T) = Cpgs(So, Fre’,w,T) (25)
= Fr{N(dy) —eN(d2)}
where B r
dy = i s fo (Ttw_ @) dt + % = —yw_% + %w% (26)

and dy = dy — Jw = —yw™? — %w%.

4.1 The Reparameterized Local Volatility Function

To express the local volatility Equation (1) in terms of y, we note that the

market call price is
C(SQ, K, T) = C(So, FTey, T)

and we take derivatives. The first derivative we need is, by the chain rule
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The second derivative we need is
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since by the chain rule % = %%—Iy{, so that 8% (g—c) = g;g %—Iy( = %K. The
third derivative we need is
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since K = Syexp (fOT pedt + y) so that ‘Z—Ié = Kuyp. Equation (28) implies
that
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Now we substitute into Equation (1), reproduced here for convenience
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which simplifies to
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where vy, = 0?(K, T) is the local variance. This is Equation (1.8) of Gatheral
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4.2 Three Useful Identities

Before expression the local volatility Equation (1) in terms of implied volatility,
we first derive three identities used by Gatheral [1] that help in this regard. We
use the fact that the derivatives of the standard normal cdf and pdf are, using

the chain rule, N'(z) = n(z)z’ and n'(x) = —an(z)z’. We also use the relation
n(dy) = \/12?67%(d2+ﬁ)2
_ 1 o~ b (d3+2d2v/wtw)
V2r
= n(dy)e V3w
= n(dy)eY.

From Equation (25) the first derivative with respect to w is
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where dy,, is the first derivative of dy with respect to w and similarly for ds.
The second derivative is
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This is the first identity we need. The second identity we need is
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where dgy = —w™2 is the first derivative of dy with respect to y. To obtain the
third identity, consider the derivative
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The third identity we need is
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We are now ready for the main derivation of this section.

4.3 Local Volatility in Terms of Implied Volatility

We note that when the market price C(Sp, K,T) is equal to the Black-Scholes
price with the implied volatility ¥(K,T) as the input to volatility

C(So, K,T) = Cps(So, K, X(K,T), T). (34)
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We can also reparameterize the Black-Scholes price in terms of the total implied
volatility w = X(K,T)?*T and K = Fre¥. Since w depends on K and K depends
on y, we have that w = w(y) and we can write

C(SO7K, T) = C’BS(SO,FTey,w(y),T). (35)

We need derivatives of the market call price C(Sp, K,T') in terms of the Black-
Scholes call price Cps(So, Fre?Y,w(y),T). From Equation (35), the first deriv-
ative we need is
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oy oy ow 0Oy
= a(w,y) + b(w, y)c(y).

(36)
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It is easier to visualize the second derivative we need, %TQ’ when we express the

partials in % as a, b, and c.
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The third derivative we need is

oC _ 0Cps  9Cps dw (39)
oTr oT ow 0T

B 9Cps dw
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Gatheral explains that the second equality follows because the only explicit
dependence of Cgg on T is through the forward price Fp, even though Cpg
depends implicitly on 7" through y and w. The reparameterized Dupire equation
(30) is reproduced here for convenience
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We substitute for 4%, %zg, and 2¢ from Equations (38), (37), and (36) respec-

tively and cancel pC from both sides to obtain
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~ 0Cps

(39)
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Oy ow Oy’

11



9°Cps 0°Cps

Ow2 ’ Owdy ’
(31), (32), and (33) respectively, the idea being to end up with terms involving
% on the right hand side of Equation (39) that can be factored out.

Now substitute for

2
and 2 aCyES from the identities in Equations
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Remove the factor ag‘gs from both sides and simplify to obtain
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Solve for vy, to obtain the final expression for the local volatility expressed in
terms of implied volatility w = 3 (K, T)2 T and the log-moneyness y = In F—KT

v =

4.4 Alternate Derivation

. . . . . 2 C . .
In this derivation we express the derivatives cho %7 and g—g in the Dupire

equation (1) in terms of y and w = w(y), but we substitute these derivatives
directly in Equation (1) rather than in (30). This means that we take derivatives
with respect to K and T', rather than with y and 7. Recall that from Equation
(35), the market call price is equal to the Black-Scholes call price with implied
volatility as input

C(So, K,T) = Cps(So, Fre?,w(y),T).

Recall also that from Equation (25) the Black-Scholes call price reparameterized
in terms of y and w is

CBS (S’O,FTey,w(y),T) = FT {N(dl) — eyN(d2>}

where d; is given in Equation (26), and where do = d; —v/w. The first derivative

we need is
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The second derivative is
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Let A = % for notational convenience. Then 8% (%) = g—}g and
9 (3Css) _ oA
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Similarly
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Substituting Equations (42) and (43) into Equation (41) produces
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The third derivative we need is
oC 0Cps | 9Cps 0y  9Cps dw
or T oy oT  Oow OT
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(45)

again using the fact that 8%—%5 depends explicitly on T only through Fr. Now

substitute for 28 2°C

2¢ 95, and 22 from Equations (40), (44), and (45) respectively

into Equation (4) for Dupire local variance, reproduced here for convenience.
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We obtain, after applying the three useful identities in Section 4.2,

9Cps 9Cps dw __ _ 1 9Cps 4 9Cps dw
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Applying the three useful identities in Section 4.2 allows the term 85—53 to be
factored out of the numerator and denominator. The last equation becomes
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Equation (46) can be simplified by considering deriving the partial derivatives
of the Black-Scholes total implied variance, w = %(K,T)?T. We have g—# =

QET% +32 0w _ oy pdS g 2w _ 9p [(%)2 + 822] . Substitute into

(46)
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Equation (46). The numerator in Equation (46) becomes
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and the denominator becomes
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Replacing w with X27" everywhere in the denominator produces
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Substituting the numerator in (47) and the denominator in (48) back to Equa-
tion (46), we obtain

. (48)

o ()3
$24 25T (8 + prK 5%)
o

2
(1+%8) +KoT 8 - 1K3T (8)" + K33

14



See also the dissertation by van der Kamp [4] for additional details of this
alternate derivation.
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