Derivation of Local Volatility

by Fabrice Douglas Rouah
www.FRouah.com
www.Volopta.com

The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral [1]), but in the derivations many steps are left out. In this Note we provide two derivations of local volatility.

1. The derivation by Dupire [2] that uses the Fokker-Planck equation.
2. The derivation by Derman et al. [3] of local volatility as a conditional expectation.

We also present the derivation of local volatility from Black-Scholes implied volatility, outlined in [1]. We will derive the following three equations that involve local volatility $\sigma=\sigma\left(S_{t}, t\right)$ or local variance $v_{L}=\sigma^{2}$.

1. The Dupire equation in its most general form (appears in [1] on page 9)

$$
\begin{equation*}
\frac{\partial C}{\partial T}=\frac{1}{2} \sigma^{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}+\left(r_{T}-q_{T}\right)\left(C-K \frac{\partial C}{\partial K}\right)-r_{T} C \tag{1}
\end{equation*}
$$

2. The equation by Derman et al. [3] for local volatility as a conditional expected value (appears with $q_{T}=0$ in [3])

$$
\begin{equation*}
\frac{\partial C}{\partial T}=-K\left(r_{T}-q_{T}\right) \frac{\partial C}{\partial K}-q_{T} C+\frac{1}{2} K^{2} E\left[\sigma_{T}^{2} \mid S_{T}=K\right] \frac{\partial^{2} C}{\partial K^{2}} \tag{2}
\end{equation*}
$$

3. Local volatility as a function of Black-Scholes implied volatility, $\Sigma=$ $\Sigma(K, T)$ (appears in [1]) expressed here as the local variance v_{L}

$$
\begin{equation*}
v_{L}=\frac{\frac{\partial w}{\partial T}}{\left[1-\frac{y}{w} \frac{\partial w}{\partial y}+\frac{1}{2} \frac{\partial^{2} w}{\partial y^{2}}+\frac{1}{4}\left(-\frac{1}{4}-\frac{1}{w}+\frac{y^{2}}{w}\right)\left(\frac{\partial w}{\partial y}\right)^{2}\right]} . \tag{3}
\end{equation*}
$$

where $w=\Sigma(K, T)^{2} T$ is the Black-Scholes total implied variance and $y=$ $\ln \frac{K}{F_{T}}$ where $F_{T}=\exp \left(\int_{0}^{T} \mu_{t} d t\right)$ is the forward price with $\mu_{t}=r_{t}-q_{t}$ (risk free rate minus dividend yield). Alternatively, local volatility can also be expressed in terms of Σ as

$$
\frac{\Sigma^{2}+2 \Sigma T\left[\frac{\partial \Sigma}{\partial T}+\left(r_{T}-q_{T}\right) K \frac{\partial \Sigma}{\partial K}\right]}{\left(1+\frac{K y}{\Sigma} \frac{\partial \Sigma}{\partial K}\right)^{2}+K \Sigma T\left[\frac{\partial \Sigma}{\partial K}-\frac{1}{4} K \Sigma T\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+K \frac{\partial^{2} \Sigma}{\partial K^{2}}\right]} .
$$

Solving for the local variance in Equation (1), we obtain

$$
\begin{equation*}
\sigma^{2}=\sigma(K, T)^{2}=\frac{\frac{\partial C}{\partial T}-\left(r_{T}-q_{T}\right)\left(C-K \frac{\partial C}{\partial K}\right)}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}} \tag{4}
\end{equation*}
$$

If we set the risk-free rate r_{T} and the dividend yield q_{T} each equal to zero, Equations (1) and (2) can each be solved to yield the same equation involving local volatility, namely

$$
\begin{equation*}
\sigma^{2}=\sigma(K, T)^{2}=\frac{\frac{\partial C}{\partial T}}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}} \tag{5}
\end{equation*}
$$

The local volatility is then $v_{L}=\sqrt{\sigma^{2}(K, T)}$. In this Note the derivation of these equations are all explained in detail.

1 Local Volatility Model for the Underlying

The underlying S_{t} follows the process

$$
\begin{align*}
d S_{t} & =\mu_{t} S_{t} d t+\sigma\left(S_{t}, t\right) S_{t} d W_{t} \tag{6}\\
& =\left(r_{t}-q_{t}\right) S_{t} d t+\sigma\left(S_{t}, t\right) S_{t} d W_{t}
\end{align*}
$$

We sometimes drop the subscript and write $d S=\mu S d t+\sigma S d W$ where $\sigma=$ $\sigma\left(S_{t}, t\right)$. We need the following preliminaries:

- Discount factor $P(t, T)=\exp \left(-\int_{t}^{T} r_{s} d s\right)$.
- Fokker-Planck equation. Denote by $f\left(S_{t}, t\right)$ the probability density function of the underlying price S_{t} at time t. Then f satisfies the equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial S}[\mu S f(S, t)]+\frac{1}{2} \frac{\partial^{2}}{\partial S^{2}}\left[\sigma^{2} S^{2} f(S, t)\right] \tag{7}
\end{equation*}
$$

- Time- t price of European call with strike K, denoted $C=C\left(S_{t}, K\right)$

$$
\begin{align*}
C & =P(t, T) E\left[\left(S_{T}-K\right)^{+}\right] \tag{8}\\
& =P(t, T) E\left[\left(S_{T}-K\right) \mathbf{1}_{\left(S_{T}>K\right)}\right] \\
& =P(t, T) \int_{K}^{\infty}\left(S_{T}-K\right) f(S, T) d S
\end{align*}
$$

where $\mathbf{1}_{\left(S_{T}>K\right)}$ is the Heaviside function and where $E[\cdot]=E\left[\cdot \mid \mathcal{F}_{t}\right]$. In the all the integrals in this Note, since the expectations are taken for the underlying price at $t=T$ it is understood that $S=S_{T}, f(S, T)=f\left(S_{T}, T\right)$ and $d S=d S_{T}$. We sometimes omit the subscript for notational convenience.

2 Derivation of the General Dupire Equation (1)

2.1 Required Derivatives

We need the following derivatives of the call $C\left(S_{t}, t\right)$.

- First derivative with respect to strike

$$
\begin{align*}
\frac{\partial C}{\partial K} & =P(t, T) \int_{K}^{\infty} \frac{\partial}{\partial K}\left(S_{T}-K\right) f(S, T) d S \tag{9}\\
& =-P(t, T) \int_{K}^{\infty} f(S, T) d S
\end{align*}
$$

- Second derivative with respect to strike

$$
\begin{align*}
\frac{\partial^{2} C}{\partial K^{2}} & =-P(t, T)[f(S, T)]_{S=K}^{S=\infty} \tag{10}\\
& =P(t, T) f(K, T)
\end{align*}
$$

We have assumed that $\lim _{S \rightarrow \infty} f(S, T)=0$.

- First derivative with respect to maturity-use the chain rule

$$
\begin{align*}
\frac{\partial C}{\partial T}= & \frac{\partial C}{\partial T} P(t, T) \times \int_{K}^{\infty}\left(S_{T}-K\right) f(S, T) d S+ \tag{11}\\
& P(t, T) \times \int_{K}^{\infty}\left(S_{T}-K\right) \frac{\partial}{\partial T}[f(S, T)] d S
\end{align*}
$$

Note that $\frac{\partial P}{\partial T}=-r_{T} P(t, T)$ so we can write (11)

$$
\begin{equation*}
\frac{\partial C}{\partial T}=-r_{T} C+P(t, T) \int_{K}^{\infty}\left(S_{T}-K\right) \frac{\partial}{\partial T}[f(S, T)] d S \tag{12}
\end{equation*}
$$

2.2 Main Equation

In Equation (12) substitute the Fokker-Planck equation (7) for $\frac{\partial f}{\partial t}$ at $t=T$

$$
\begin{align*}
\frac{\partial C}{\partial T}+r_{T} C= & P(t, T) \int_{K}^{\infty}\left(S_{T}-K\right) \times \tag{13}\\
& \left\{-\frac{\partial}{\partial S}\left[\mu_{T} S f(S, T)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial S^{2}}\left[\sigma^{2} S^{2} f(S, T)\right]\right\} d S
\end{align*}
$$

This is the main equation we need because it is from this equation that the Dupire local volatility is derived. In Equation (13) have two integrals to evaluate

$$
\begin{align*}
I_{1} & =\mu_{T} \int_{K}^{\infty}\left(S_{T}-K\right) \frac{\partial}{\partial S}[S f(S, T)] d S \tag{14}\\
I_{2} & =\int_{K}^{\infty}\left(S_{T}-K\right) \frac{\partial^{2}}{\partial S^{2}}\left[\sigma^{2} S^{2} f(S, T)\right] d S
\end{align*}
$$

Before evaluating these two integrals we need the following two identities.

2.3 Two Useful Identities

2.3.1 First Identity

From the call price Equation (8), we obtain

$$
\begin{align*}
\frac{C}{P(t, T)} & =\int_{K}^{\infty}\left(S_{T}-K\right) f(S, T) d S \tag{15}\\
& =\int_{K}^{\infty} S_{T} f(S, T) d S-K \int_{K}^{\infty} f(S, T) d S
\end{align*}
$$

From the expression for $\frac{\partial C}{\partial K}$ in Equation (9) we obtain

$$
\int_{K}^{\infty} f(S, T) d S=-\frac{1}{P(t, T)} \frac{\partial C}{\partial K}
$$

Substitute back into Equation (15) and re-arrange terms to obtain the first identity

$$
\begin{equation*}
\int_{K}^{\infty} S_{T} f(S, T) d S=\frac{C}{P(t, T)}-\frac{K}{P(t, T)} \frac{\partial C}{\partial K} \tag{16}
\end{equation*}
$$

2.3.2 Second Identity

We use the expression for $\frac{\partial^{2} C}{\partial K^{2}}$ in Equation (10) to obtain the second identity

$$
\begin{equation*}
f(K, T)=\frac{1}{P(t, T)} \frac{\partial^{2} C}{\partial K^{2}} \tag{17}
\end{equation*}
$$

2.4 Evaluating the Integrals

We can now evaluate the integrals I_{1} and I_{2} defined in Equation (14).

2.4.1 First integral

Use integration by parts with $u=S_{T}-K, u^{\prime}=1, v^{\prime}=\frac{\partial}{\partial S}[S f(S, T)], v=$ $S f(S, T)$

$$
\begin{aligned}
I_{1} & =\left[\mu_{T}\left(S_{T}-K\right) S_{T} f(S, T)\right]_{S=K}^{S=\infty}-\mu_{T} \int_{K}^{\infty} S f(S, T) d S \\
& =[0-0]-\mu_{T} \int_{K}^{\infty} S f(S, T) d S
\end{aligned}
$$

We have assumed $\lim _{S \rightarrow \infty}(S-K) S f(S, T)=0$. Substitute the first identity (16) to obtain the first integral I_{1}

$$
\begin{equation*}
I_{1}=\frac{-\mu_{T} C}{P(t, T)}+\frac{\mu_{T} K}{P(t, T)} \frac{\partial C}{\partial K} \tag{18}
\end{equation*}
$$

2.4.2 Second integral

Use integration by parts with $u=S_{T}-K, u^{\prime}=1, v^{\prime}=\frac{\partial^{2}}{\partial S^{2}}\left[\sigma^{2} S^{2} f(S, T)\right], v=$ $\frac{\partial}{\partial S}\left[\sigma^{2} S^{2} f(S, T)\right]$

$$
\begin{aligned}
I_{2} & =\left[\left(S_{T}-K\right) \frac{\partial}{\partial S}\left\{\sigma^{2} S^{2} f(S, T)\right\}\right]_{S=K}^{S=\infty}-\int_{K}^{\infty} \frac{\partial}{\partial S}\left[\sigma^{2} S^{2} f(S, T)\right] d S \\
& =[0-0]-\left[\sigma^{2} S^{2} f(S, T)\right]_{S=K}^{S=\infty} \\
& =\sigma^{2} K^{2} f(K, T)
\end{aligned}
$$

where $\sigma^{2}=\sigma(K, T)^{2}$. We have assumed that $\lim _{S \rightarrow \infty} \frac{\partial}{\partial S}\left\{\sigma^{2} S^{2} f(S, T)\right\}=0$. Substitute the second identity (17) for $f(K, T)$ to obtain the second integral I_{2}

$$
\begin{equation*}
I_{2}=\frac{\sigma^{2} K^{2}}{P(t, T)} \frac{\partial^{2} C}{\partial K^{2}} \tag{19}
\end{equation*}
$$

2.5 Obtaining the Dupire Equation

We can now evaluate the main Equation (13) which we write as

$$
\frac{\partial C}{\partial T}+r_{T} C=P(t, T)\left[-I_{1}+\frac{1}{2} I_{2}\right]
$$

Substitute for I_{1} from Equation (18) and for I_{2} from Equation (19)

$$
\frac{\partial C}{\partial T}+r_{T} C=\mu_{T} C-\mu_{T} K \frac{\partial C}{\partial K}+\frac{1}{2} \sigma^{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}
$$

Substitute for $\mu_{T}=r_{T}-q_{T}$ (risk free rate minus dividend yield) to obtain the Dupire equation (1)

$$
\frac{\partial C}{\partial T}=\frac{1}{2} \sigma^{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}+\left(r_{T}-q_{T}\right)\left(C-K \frac{\partial C}{\partial K}\right)-r_{T} C
$$

Solve for $\sigma^{2}=\sigma(K, T)^{2}$ to obtain the Dupire local variance in its general form

$$
\sigma(K, T)^{2}=\frac{\frac{\partial C}{\partial T}+q_{T} C+\left(r_{T}-q_{K}\right) K \frac{\partial C}{\partial K}}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}}
$$

Dupire [2] assumes zero interest rates and zero dividend yield. Hence $r_{T}=$ $q_{T}=0$ so that the underlying process is $d S_{t}=\sigma\left(S_{t}, t\right) S_{t} d W_{t}$. We obtain

$$
\sigma(K, T)^{2}=\frac{\frac{\partial C}{\partial T}}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}}
$$

which is Equation (5).

3 Derivation of Local Volatility as an Expected Value, Equation (2)

We need the following preliminaries, all of which are easy to show

$\frac{\partial}{\partial S}(S-K)^{+}=\mathbf{1}_{(S>K)}$	$\frac{\partial}{\partial S} \mathbf{1}_{(S>K)}=\delta(S-K)$
$\frac{\partial}{\partial K}(S-K)^{+}=-\mathbf{1}_{(S>K)}$	$\frac{\partial}{\partial K} \mathbf{1}_{(S>K)}=-\delta(S-K)$
$\frac{\partial C}{\partial K}=-P(t, T) E\left[\mathbf{1}_{(S>K)}\right]$	$\frac{\partial^{2} C}{\partial K^{2}}=P(t, T) E[\delta(S-K)]$

In the table, $\delta(\cdot)$ denotes the Dirac delta function. Now define the function $f\left(S_{T}, T\right)$ as

$$
f\left(S_{T}, T\right)=P(t, T)\left(S_{T}-K\right)^{+}
$$

Recall the process for S_{t} is given by Equation (6). By Itō's Lemma, f follows the process

$$
\begin{equation*}
d f=\left[\frac{\partial f}{\partial T}+\mu_{T} S_{T} \frac{\partial f}{\partial S_{T}}+\frac{1}{2} \sigma_{T}^{2} S_{T} \frac{\partial^{2} f}{\partial S_{T}^{2}}\right] d T+\left[\sigma_{T} S_{T} \frac{\partial f}{\partial S_{T}}\right] d W_{T} \tag{20}
\end{equation*}
$$

Now the partial derivatives are

$$
\begin{aligned}
\frac{\partial f}{\partial T} & =-r_{T} P(t, T)\left(S_{T}-K\right)^{+} \\
\frac{\partial f}{\partial S_{T}} & =P(t, T) \mathbf{1}_{\left(S_{T}>K\right)} \\
\frac{\partial^{2} f}{\partial S_{T}^{2}} & =P(t, T) \delta\left(S_{T}-K\right)
\end{aligned}
$$

Substitute them into Equation (20)

$$
\begin{align*}
d f= & P(t, T) \times \tag{21}\\
& {\left[-r_{T}\left(S_{T}-K\right)^{+}+\mu_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)}+\frac{1}{2} \sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right] d T } \\
& +P(t, T)\left[\sigma_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)}\right] d W_{T}
\end{align*}
$$

Consider the first two terms of (21), which can be written as

$$
\begin{aligned}
-r_{T}\left(S_{T}-K\right)^{+}+\mu_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)} & =-r_{T}\left(S_{T}-K\right) \mathbf{1}_{\left(S_{T}>K\right)}+\mu_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)} \\
& =r_{T} K \mathbf{1}_{\left(S_{T}>K\right)}-q_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)}
\end{aligned}
$$

When we take the expected value of Equation (21), the stochastic term drops out since $E\left[d W_{T}\right]=0$. Hence we can write the expected value of (21) as

$$
\begin{align*}
d C & =E[d f] \tag{22}\\
& =P(t, T) E\left[r_{T} K \mathbf{1}_{\left(S_{T}>K\right)}-q_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)}+\frac{1}{2} \sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right] d T
\end{align*}
$$

so that

$$
\begin{equation*}
\frac{d C}{d T}=P(t, T) E\left[r_{T} K \mathbf{1}_{\left(S_{T}>K\right)}-q_{T} S_{T} \mathbf{1}_{\left(S_{T}>K\right)}+\frac{1}{2} \sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right] \tag{23}
\end{equation*}
$$

Using the second line in Equation (8), we can write

$$
P(t, T) E\left[S_{T} \mathbf{1}_{\left(S_{T}>K\right)}\right]=C+K P(t, T) E\left[\mathbf{1}_{\left(S_{T}>K\right)}\right]
$$

so Equation (23) becomes

$$
\begin{align*}
\frac{d C}{d T}= & K P(t, T) r_{T} E\left[\mathbf{1}_{\left(S_{T}>K\right)}\right]-q_{T}\left(C+K P(t, T) E\left[\mathbf{1}_{\left(S_{T}>K\right)}\right]\right) \tag{24}\\
& +\frac{1}{2} P(t, T) E\left[\sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right] \\
= & -K\left(r_{T}-q_{T}\right) \frac{\partial C}{\partial K}-q_{T} C+\frac{1}{2} P(t, T) E\left[\sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right]
\end{align*}
$$

where we have substituted $-\frac{\partial C}{\partial K}$ for $P(t, T) E\left[\mathbf{1}_{\left(S_{T}>K\right)}\right]$. The last term in the last line of Equation (24) can be written

$$
\begin{aligned}
\frac{1}{2} P(t, T) E\left[\sigma_{T}^{2} S_{T}^{2} \delta\left(S_{T}-K\right)\right] & =\frac{1}{2} P(t, T) E\left[\sigma_{T}^{2} S_{T}^{2} \mid S_{T}=K\right] E\left[\delta\left(S_{T}-K\right)\right] \\
& =\frac{1}{2} P(t, T) E\left[\sigma_{T}^{2} \mid S_{T}=K\right] K^{2} E\left[\delta\left(S_{T}-K\right)\right] \\
& =\frac{1}{2} E\left[\sigma_{T}^{2} \mid S_{T}=K\right] K^{2} \frac{\partial^{2} C}{\partial K^{2}}
\end{aligned}
$$

where we have substituted $\frac{\partial^{2} C}{\partial K^{2}}$ for $P(t, T) E\left[\delta\left(S_{T}-K\right)\right]$. We obtain the final result, Equation (2)

$$
\frac{\partial C}{\partial T}=-K\left(r_{T}-q_{T}\right) \frac{\partial C}{\partial K}-q_{T} C+\frac{1}{2} K^{2} E\left[\sigma_{T}^{2} \mid S_{T}=K\right] \frac{\partial^{2} C}{\partial K^{2}}
$$

When $r_{T}=q_{T}=0$ we can re-arrange the result to obtain

$$
E\left[\sigma_{T}^{2} \mid S_{T}=K\right]=\frac{\frac{\partial C}{\partial T}}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}}
$$

which, again, is Equation (5). Hence when the dividend and interest rate are both zero, the derivation of local volatility using Dupire's approach and the derivation using conditional expectation produce the same result.

4 Derivation of Local Volatility From Implied Volatility, Equation (3)

To express local volatility in terms of implied volatility, we need the three derivatives $\frac{\partial C}{\partial T}, \frac{\partial C}{\partial K}$, and $\frac{\partial^{2} C}{\partial K^{2}}$ that appear in Equation (1), but expressed in terms of
implied volatility. Following Gatheral [1] we define the log-moneyness

$$
y=\ln \frac{K}{F_{T}}
$$

where $F_{T}=S_{0} \exp \left(\int_{0}^{T} \mu_{t} d t\right)$ is the forward price $\left(\mu_{t}=r_{t}-q_{t}\right.$, risk free rate minus dividend yield) and K is the strike price, and the "total" Black-Scholes implied variance

$$
w=\Sigma(K, T)^{2} T
$$

where $\Sigma(K, T)$ is the implied volatility. The Black-Scholes call price can then be written as

$$
\begin{align*}
C_{B S}\left(S_{0}, K, \Sigma(K, T), T\right) & =C_{B S}\left(S_{0}, F_{T} e^{y}, w, T\right) \tag{25}\\
& =F_{T}\left\{N\left(d_{1}\right)-e^{y} N\left(d_{2}\right)\right\}
\end{align*}
$$

where

$$
\begin{equation*}
d_{1}=\frac{\ln \frac{S_{0}}{K}+\int_{0}^{T}\left(r_{t}-q_{t}\right) d t+\frac{w}{2}}{\sqrt{w}}=-y w^{-\frac{1}{2}}+\frac{1}{2} w^{\frac{1}{2}} \tag{26}
\end{equation*}
$$

and $d_{2}=d_{1}-\sqrt{w}=-y w^{-\frac{1}{2}}-\frac{1}{2} w^{\frac{1}{2}}$.

4.1 The Reparameterized Local Volatility Function

To express the local volatility Equation (1) in terms of y, we note that the market call price is

$$
C\left(S_{0}, K, T\right)=C\left(S_{0}, F_{T} e^{y}, T\right)
$$

and we take derivatives. The first derivative we need is, by the chain rule

$$
\begin{equation*}
\frac{\partial C}{\partial y}=\frac{\partial C}{\partial K} \frac{\partial K}{\partial y}=\frac{\partial C}{\partial K} K \tag{27}
\end{equation*}
$$

The second derivative we need is

$$
\begin{align*}
\frac{\partial^{2} C}{\partial y^{2}} & =\frac{\partial}{\partial y}\left(\frac{\partial C}{\partial K}\right) K+\frac{\partial C}{\partial K} \frac{\partial K}{\partial y} \tag{28}\\
& =\frac{\partial^{2} C}{\partial K^{2}} K^{2}+\frac{\partial C}{\partial y}
\end{align*}
$$

since by the chain rule $\frac{\partial A}{\partial y}=\frac{\partial A}{\partial K} \frac{\partial K}{\partial y}$, so that $\frac{\partial}{\partial y}\left(\frac{\partial C}{\partial K}\right)=\frac{\partial^{2} C}{\partial K^{2}} \frac{\partial K}{\partial y}=\frac{\partial^{2} C}{\partial K^{2}} K$. The third derivative we need is

$$
\begin{align*}
\frac{\partial C}{\partial T} & =\frac{\partial C}{\partial T}+\frac{\partial C}{\partial K} \frac{\partial K}{\partial T} \tag{29}\\
& =\frac{\partial C}{\partial T}+\frac{\partial C}{\partial K} K \mu_{T} \\
& =\frac{\partial C}{\partial T}+\frac{\partial C}{\partial y} \mu_{T}
\end{align*}
$$

since $K=S_{0} \exp \left(\int_{0}^{T} \mu_{t} d t+y\right)$ so that $\frac{\partial K}{\partial T}=K \mu_{T}$. Equation (28) implies that

$$
\frac{\partial^{2} C}{\partial K^{2}} K^{2}=\frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial C}{\partial y}
$$

Now we substitute into Equation (1), reproduced here for convenience

$$
\begin{aligned}
\frac{\partial C}{\partial T} & =\frac{1}{2} \sigma^{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}+\mu_{T}\left(C-K \frac{\partial C}{\partial K}\right) \\
\frac{\partial C}{\partial T}-\frac{\partial C}{\partial y} \mu_{T} & =\frac{1}{2} \sigma^{2}\left(\frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial C}{\partial y}\right)+\mu_{T}\left(C-\frac{\partial C}{\partial y}\right)
\end{aligned}
$$

which simplifies to

$$
\begin{equation*}
\frac{\partial C}{\partial T}=\frac{v_{L}}{2}\left[\frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial C}{\partial y}\right]+\mu_{T} C \tag{30}
\end{equation*}
$$

where $v_{L}=\sigma^{2}(K, T)$ is the local variance. This is Equation (1.8) of Gatheral [1].

4.2 Three Useful Identities

Before expression the local volatility Equation (1) in terms of implied volatility, we first derive three identities used by Gatheral [1] that help in this regard. We use the fact that the derivatives of the standard normal cdf and pdf are, using the chain rule, $N^{\prime}(x)=n(x) x^{\prime}$ and $n^{\prime}(x)=-x n(x) x^{\prime}$. We also use the relation

$$
\begin{aligned}
n\left(d_{1}\right) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(d_{2}+\sqrt{w}\right)^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(d_{2}^{2}+2 d_{2} \sqrt{w}+w\right)} \\
& =n\left(d_{2}\right) e^{-d_{2} \sqrt{w}-\frac{1}{2} w} \\
& =n\left(d_{2}\right) e^{y}
\end{aligned}
$$

From Equation (25) the first derivative with respect to w is

$$
\begin{aligned}
\frac{\partial C_{B S}}{\partial w} & =F_{T}\left[n\left(d_{1}\right) d_{1 w}-e^{y} n\left(d_{2}\right) d_{2 w}\right] \\
& =F_{T}\left[n\left(d_{2}\right) e^{y}\left(d_{2 w}+\frac{1}{2} w^{-\frac{1}{2}}\right)-e^{y} n\left(d_{2}\right) d_{2 w}\right] \\
& =\frac{1}{2} F_{T} e^{y}\left[n\left(d_{2}\right) w^{-\frac{1}{2}}\right]
\end{aligned}
$$

where $d_{1 w}$ is the first derivative of d_{1} with respect to w and similarly for d_{2}. The second derivative is

$$
\begin{align*}
\frac{\partial^{2} C_{B S}}{\partial w^{2}} & =\frac{1}{2} F_{T} e^{y}\left[-n\left(d_{2}\right) d_{2} d_{2 w} w^{-\frac{1}{2}}-\frac{1}{2} n\left(d_{2}\right) w^{-\frac{3}{2}}\right] \tag{31}\\
& =\frac{1}{2} F_{T} e^{y} n\left(d_{2}\right) w^{-\frac{1}{2}}\left[-d_{2} d_{2 w}-\frac{1}{2} w^{-1}\right] \\
& =\frac{\partial C_{B S}}{\partial w}\left[\left(y w^{-\frac{1}{2}}+\frac{1}{2} w^{\frac{1}{2}}\right)\left(\frac{1}{2} y w^{-\frac{3}{2}}-\frac{1}{4} w^{-\frac{1}{2}}\right)-\frac{1}{2} w^{-1}\right] \\
& =\frac{\partial C_{B S}}{\partial w}\left[-\frac{1}{8}-\frac{1}{2 w}+\frac{y^{2}}{2 w^{2}}\right] .
\end{align*}
$$

This is the first identity we need. The second identity we need is

$$
\begin{align*}
\frac{\partial^{2} C_{B S}}{\partial w \partial y} & =\frac{1}{2} F_{T} w^{-\frac{1}{2}} \frac{\partial}{\partial y}\left[e^{y} n\left(d_{2}\right)\right] \tag{32}\\
& =\frac{1}{2} F_{T} w^{-\frac{1}{2}}\left[e^{y} n\left(d_{2}\right)-e^{y} n\left(d_{2}\right) d_{2} d_{2 y}\right] \\
& =\frac{\partial C_{B S}}{\partial w}\left[1-d_{2} d_{2 y}\right] \\
& =\frac{\partial C_{B S}}{\partial w}\left(\frac{1}{2}-\frac{y}{w}\right)
\end{align*}
$$

where $d_{2 y}=-w^{-\frac{1}{2}}$ is the first derivative of d_{2} with respect to y. To obtain the third identity, consider the derivative

$$
\begin{aligned}
\frac{\partial C_{B S}}{\partial y} & =F_{T}\left[n\left(d_{1}\right) d_{1 y}-e^{y} N\left(d_{2}\right)-e^{y} n\left(d_{2}\right) d_{2 y}\right] \\
& =F_{T} e^{y}\left[n\left(d_{2}\right) d_{1 y}-N\left(d_{2}\right)-n\left(d_{2}\right) d_{2 y}\right] \\
& =-F_{T} e^{y} N\left(d_{2}\right)
\end{aligned}
$$

The third identity we need is

$$
\begin{align*}
\frac{\partial^{2} C_{B S}}{\partial y^{2}} & =-F_{T}\left[e^{y} N\left(d_{2}\right)+e^{y} n\left(d_{2}\right) d_{2 y}\right] \tag{33}\\
& =-F_{T} e^{y} N\left(d_{2}\right)+F_{T} e^{y} n\left(d_{2}\right) w^{-\frac{1}{2}} \\
& =\frac{\partial C_{B S}}{\partial y}+2 \frac{\partial C_{B S}}{\partial w}
\end{align*}
$$

We are now ready for the main derivation of this section.

4.3 Local Volatility in Terms of Implied Volatility

We note that when the market price $C\left(S_{0}, K, T\right)$ is equal to the Black-Scholes price with the implied volatility $\Sigma(K, T)$ as the input to volatility

$$
\begin{equation*}
C\left(S_{0}, K, T\right)=C_{B S}\left(S_{0}, K, \Sigma(K, T), T\right) \tag{34}
\end{equation*}
$$

We can also reparameterize the Black-Scholes price in terms of the total implied volatility $w=\Sigma(K, T)^{2} T$ and $K=F_{T} e^{y}$. Since w depends on K and K depends on y, we have that $w=w(y)$ and we can write

$$
\begin{equation*}
C\left(S_{0}, K, T\right)=C_{B S}\left(S_{0}, F_{T} e^{y}, w(y), T\right) \tag{35}
\end{equation*}
$$

We need derivatives of the market call price $C\left(S_{0}, K, T\right)$ in terms of the BlackScholes call price $C_{B S}\left(S_{0}, F_{T} e^{y}, w(y), T\right)$. From Equation (35), the first derivative we need is

$$
\begin{align*}
\frac{\partial C}{\partial y} & =\frac{\partial C_{B S}}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial y} \tag{36}\\
& =a(w, y)+b(w, y) c(y)
\end{align*}
$$

It is easier to visualize the second derivative we need, $\frac{\partial^{2} C}{\partial y^{2}}$, when we express the partials in $\frac{\partial C}{\partial y}$ as a, b, and c.

$$
\begin{align*}
\frac{\partial^{2} C}{\partial y^{2}} & =\frac{\partial a}{\partial y}+\frac{\partial a}{\partial w} \frac{\partial w}{\partial y}+b(w, y) \frac{\partial c}{\partial y}+\left[\frac{\partial b}{\partial y}+\frac{\partial b}{\partial w} \frac{\partial w}{\partial y}\right] c(y) \tag{37}\\
& =\frac{\partial^{2} C_{B S}}{\partial y^{2}}+\frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial y^{2}}+\left[\frac{\partial^{2} C_{B S}}{\partial w \partial y}+\frac{\partial^{2} C_{B S}}{\partial w^{2}} \frac{\partial w}{\partial y}\right] \frac{\partial w}{\partial y} \\
& =\frac{\partial^{2} C_{B S}}{\partial y^{2}}+2 \frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} C_{B S}}{\partial w^{2}}\left(\frac{\partial w}{\partial y}\right)^{2}
\end{align*}
$$

The third derivative we need is

$$
\begin{align*}
\frac{\partial C}{\partial T} & =\frac{\partial C_{B S}}{\partial T}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T} \tag{38}\\
& =\mu_{T} C+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T}
\end{align*}
$$

Gatheral explains that the second equality follows because the only explicit dependence of $C_{B S}$ on T is through the forward price F_{T}, even though $C_{B S}$ depends implicitly on T through y and w. The reparameterized Dupire equation (30) is reproduced here for convenience

$$
\frac{\partial C}{\partial T}=\frac{v_{L}}{2}\left[\frac{\partial^{2} C}{\partial y^{2}}-\frac{\partial C}{\partial y}\right]+\mu_{T} C
$$

We substitute for $\frac{\partial C}{\partial T}, \frac{\partial^{2} C}{\partial y^{2}}$, and $\frac{\partial C}{\partial y}$ from Equations (38), (37), and (36) respectively and cancel $\mu_{T} C$ from both sides to obtain

$$
\begin{align*}
\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T}= & \frac{v_{L}}{2}\left[\frac{\partial^{2} C_{B S}}{\partial y^{2}}+2 \frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} C_{B S}}{\partial w^{2}}\left(\frac{\partial w}{\partial y}\right)^{2}\right. \\
& \left.-\frac{\partial C_{B S}}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial y}\right] \tag{39}
\end{align*}
$$

Now substitute for $\frac{\partial^{2} C_{B S}}{\partial w^{2}}, \frac{\partial^{2} C_{B S}}{\partial w \partial y}$, and $\frac{\partial^{2} C_{B S}}{\partial y^{2}}$ from the identities in Equations (31), (32), and (33) respectively, the idea being to end up with terms involving $\frac{\partial C_{B S}}{\partial w}$ on the right hand side of Equation (39) that can be factored out.

$$
\begin{aligned}
\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T}= & \frac{v_{L}}{2} \frac{\partial C_{B S}}{\partial w}\left[2+2\left(\frac{1}{2}-\frac{y}{w}\right) \frac{\partial w}{\partial y}+\left(-\frac{1}{8}-\frac{1}{2 w}+\frac{y^{2}}{2 w}\right)\left(\frac{\partial w}{\partial y}\right)^{2}\right. \\
& \left.+\frac{\partial^{2} w}{\partial y^{2}}-\frac{\partial w}{\partial y}\right]
\end{aligned}
$$

Remove the factor $\frac{\partial C_{B S}}{\partial w}$ from both sides and simplify to obtain

$$
\frac{\partial w}{\partial T}=v_{L}\left[1-\frac{y}{w} \frac{\partial w}{\partial y}+\frac{1}{2} \frac{\partial^{2} w}{\partial y^{2}}+\frac{1}{4}\left(-\frac{1}{4}-\frac{1}{w}+\frac{y^{2}}{w}\right)\left(\frac{\partial w}{\partial y}\right)^{2}\right]
$$

Solve for v_{L} to obtain the final expression for the local volatility expressed in terms of implied volatility $w=\Sigma(K, T)^{2} T$ and the log-moneyness $y=\ln \frac{K}{F_{T}}$

$$
v_{L}=\frac{\frac{\partial w}{\partial T}}{\left[1-\frac{y}{w} \frac{\partial w}{\partial y}+\frac{1}{2} \frac{\partial^{2} w}{\partial y^{2}}+\frac{1}{4}\left(-\frac{1}{4}-\frac{1}{w}+\frac{y^{2}}{w}\right)\left(\frac{\partial w}{\partial y}\right)^{2}\right]} .
$$

4.4 Alternate Derivation

In this derivation we express the derivatives $\frac{\partial C}{\partial K}, \frac{\partial^{2} C}{\partial K^{2}}$, and $\frac{\partial C}{\partial T}$ in the Dupire equation (1) in terms of y and $w=w(y)$, but we substitute these derivatives directly in Equation (1) rather than in (30). This means that we take derivatives with respect to K and T, rather than with y and T. Recall that from Equation (35), the market call price is equal to the Black-Scholes call price with implied volatility as input

$$
C\left(S_{0}, K, T\right)=C_{B S}\left(S_{0}, F_{T} e^{y}, w(y), T\right)
$$

Recall also that from Equation (25) the Black-Scholes call price reparameterized in terms of y and w is

$$
C_{B S}\left(S_{0}, F_{T} e^{y}, w(y), T\right)=F_{T}\left\{N\left(d_{1}\right)-e^{y} N\left(d_{2}\right)\right\}
$$

where d_{1} is given in Equation (26), and where $d_{2}=d_{1}-\sqrt{w}$. The first derivative we need is

$$
\begin{align*}
\frac{\partial C}{\partial K} & =\frac{\partial C_{B S}}{\partial y} \frac{\partial y}{\partial K}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial K} \tag{40}\\
& =\frac{1}{K} \frac{\partial C_{B S}}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial K}
\end{align*}
$$

The second derivative is

$$
\begin{align*}
\frac{\partial^{2} C}{\partial K^{2}} & =-\frac{1}{K^{2}} \frac{\partial C_{B S}}{\partial y}+\frac{1}{K} \frac{\partial}{\partial K}\left(\frac{\partial C_{B S}}{\partial y}\right) . \tag{41}\\
& +\frac{\partial}{\partial K}\left(\frac{\partial C_{B S}}{\partial w}\right) \frac{\partial w}{\partial K}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial K^{2}}
\end{align*}
$$

Let $A=\frac{\partial C}{\partial y}$ for notational convenience. Then $\frac{\partial}{\partial K}\left(\frac{\partial C}{\partial y}\right)=\frac{\partial A}{\partial K}$ and

$$
\begin{align*}
\frac{\partial}{\partial K}\left(\frac{\partial C_{B S}}{\partial y}\right) & =\frac{\partial A}{\partial K} \tag{42}\\
& =\frac{\partial A}{\partial y} \frac{\partial y}{\partial K}+\frac{\partial A}{\partial w} \frac{\partial w}{\partial K} \\
& =\frac{\partial^{2} C_{B S}}{\partial y^{2}} \frac{1}{K}+\frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial K}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial}{\partial K}\left(\frac{\partial C_{B S}}{\partial w}\right)=\frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{1}{K}+\frac{\partial^{2} C_{B S}}{\partial w^{2}} \frac{\partial w}{\partial K} \tag{43}
\end{equation*}
$$

Substituting Equations (42) and (43) into Equation (41) produces

$$
\begin{align*}
\frac{\partial^{2} C}{\partial K^{2}}= & -\frac{1}{K^{2}} \frac{\partial C_{B S}}{\partial y}+\frac{1}{K}\left(\frac{\partial^{2} C_{B S}}{\partial y^{2}} \frac{1}{K}+\frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial K}\right) \tag{44}\\
& +\left(\frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{1}{K}+\frac{\partial^{2} C_{B S}}{\partial w^{2}} \frac{\partial w}{\partial K}\right) \frac{\partial w}{\partial K}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial K^{2}} \\
= & \frac{1}{K^{2}}\left(\frac{\partial^{2} C_{B S}}{\partial y^{2}}-\frac{\partial C_{B S}}{\partial y}\right)+\frac{2}{K} \frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial K} \\
& +\frac{\partial^{2} C_{B S}}{\partial w^{2}}\left(\frac{\partial w}{\partial K}\right)^{2}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial K^{2}}
\end{align*}
$$

The third derivative we need is

$$
\begin{align*}
\frac{\partial C}{\partial T} & =\frac{\partial C_{B S}}{\partial T}+\frac{\partial C_{B S}}{\partial y} \frac{\partial y}{\partial T}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T} \tag{45}\\
& =\mu_{T} C_{B S}+\frac{\partial C_{B S}}{\partial y} \mu_{T}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T}
\end{align*}
$$

again using the fact that $\frac{\partial C_{B S}}{\partial T}$ depends explicitly on T only through F_{T}. Now substitute for $\frac{\partial C}{\partial K}, \frac{\partial^{2} C}{\partial K^{2}}$, and $\frac{\partial C}{\partial T}$ from Equations (40), (44), and (45) respectively into Equation (4) for Dupire local variance, reproduced here for convenience.

$$
\sigma^{2}=\frac{\frac{\partial C}{\partial T}-\mu_{T}\left[C_{B S}-K \frac{\partial C}{\partial K}\right]}{\frac{1}{2} K^{2} \frac{\partial^{2} C}{\partial K^{2}}}
$$

We obtain, after applying the three useful identities in Section 4.2,

$$
\sigma^{2}=\frac{\mu_{T} C_{B S}+\frac{\partial C_{B S}}{\partial y} \mu_{T}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial T}-\mu_{T}\left[C_{B S}-K\left(\frac{1}{K} \frac{\partial C_{B S}}{\partial y}+\frac{\partial C_{B S}}{\partial w} \frac{\partial w}{\partial K}\right)\right]}{\frac{1}{2} K^{2}\left[\frac{1}{K^{2}}\left(\frac{\partial^{2} C_{B S}}{\partial y^{2}}-\frac{\partial C_{B S}}{\partial y}\right)+\frac{2}{K} \frac{\partial^{2} C_{B S}}{\partial y \partial w} \frac{\partial w}{\partial K}+\frac{\partial^{2} C_{B S}}{\partial w^{2}}\left(\frac{\partial w}{\partial K}\right)^{2}+\frac{\partial C_{B S}}{\partial w} \frac{\partial^{2} w}{\partial K^{2}}\right]} .
$$

Applying the three useful identities in Section 4.2 allows the term $\frac{\partial C_{B S}}{\partial w}$ to be factored out of the numerator and denominator. The last equation becomes

$$
\begin{equation*}
\sigma^{2}=\frac{\left[\frac{\partial w}{\partial T}+\mu_{T} K \frac{\partial w}{\partial K}\right]}{\frac{1}{2} K^{2}\left[\frac{2}{K^{2}}+\frac{2}{K}\left(\frac{1}{2}-\frac{y}{w}\right) \frac{\partial w}{\partial K}+\left(-\frac{1}{8}-\frac{1}{2 w}+\frac{y^{2}}{2 w^{2}}\right)\left(\frac{\partial w}{\partial K}\right)^{2}+\frac{\partial^{2} w}{\partial K^{2}}\right]} \tag{46}
\end{equation*}
$$

Equation (46) can be simplified by considering deriving the partial derivatives of the Black-Scholes total implied variance, $w=\Sigma(K, T)^{2} T$. We have $\frac{\partial w}{\partial T}=$ $2 \Sigma T \frac{\partial \Sigma}{\partial T}+\Sigma^{2}, \frac{\partial w}{\partial K}=2 \Sigma T \frac{\partial \Sigma}{\partial K}$, and $\frac{\partial^{2} w}{\partial K^{2}}=2 T\left[\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+\Sigma \frac{\partial^{2} \Sigma}{\partial K^{2}}\right]$. Substitute into Equation (46). The numerator in Equation (46) becomes

$$
\begin{equation*}
\Sigma^{2}+2 \Sigma T\left(\frac{\partial \Sigma}{\partial T}+\mu_{T} K \frac{\partial \Sigma}{\partial K}\right) \tag{47}
\end{equation*}
$$

and the denominator becomes

$$
\begin{aligned}
& 1+2 K \Sigma T\left(\frac{1}{2}-\frac{y}{w}\right) \frac{\partial \Sigma}{\partial K}+2 K^{2} \Sigma^{2} T^{2}\left(-\frac{1}{8}-\frac{1}{2 w}+\frac{y^{2}}{2 w^{2}}\right)\left(\frac{\partial \Sigma}{\partial K}\right)^{2} \\
& +K^{2} T\left[\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+\Sigma \frac{\partial^{2} \Sigma}{\partial K^{2}}\right]
\end{aligned}
$$

Replacing w with $\Sigma^{2} T$ everywhere in the denominator produces

$$
\begin{align*}
& 1+2 K \Sigma T\left(\frac{1}{2}-\frac{y}{\Sigma^{2} T}\right) \frac{\partial \Sigma}{\partial K}+2 K^{2} \Sigma^{2} T^{2}\left(-\frac{1}{8}-\frac{1}{2 \Sigma^{2} T}+\frac{y^{2}}{2 \Sigma^{4} T^{2}}\right)\left(\frac{\partial \Sigma}{\partial K}\right)^{2} \\
& +K^{2} T\left[\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+\Sigma \frac{\partial^{2} \Sigma}{\partial K^{2}}\right] \\
= & 1+K \Sigma T \frac{\partial \Sigma}{\partial K}-\frac{2 K y}{\Sigma} \frac{\partial \Sigma}{\partial K}-\frac{K^{2} \Sigma^{2} T^{2}}{4}\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+\frac{K^{2} y^{2}}{\Sigma^{2}}\left(\frac{\partial \Sigma}{\partial K}\right)^{2} \\
& +K^{2} \Sigma T \frac{\partial^{2} \Sigma}{\partial K^{2}} \\
= & \left(1-\frac{K y}{\Sigma} \frac{\partial \Sigma}{\partial K}\right)^{2}+\left[1-2 \frac{K y}{\Sigma} \frac{\partial \Sigma}{\partial K}+\left(\frac{K y}{\Sigma} \frac{\partial \Sigma}{\partial K}\right)^{2}\right] \tag{48}
\end{align*}
$$

Substituting the numerator in (47) and the denominator in (48) back to Equation (46), we obtain

$$
\frac{\Sigma^{2}+2 \Sigma T\left(\frac{\partial \Sigma}{\partial T}+\mu_{T} K \frac{\partial \Sigma}{\partial K}\right)}{\left(1+\frac{K y}{\Sigma} \frac{\partial \Sigma}{\partial K}\right)^{2}+K \Sigma T\left[\frac{\partial \Sigma}{\partial K}-\frac{1}{4} K \Sigma T\left(\frac{\partial \Sigma}{\partial K}\right)^{2}+K \frac{\partial^{2} \Sigma}{\partial K^{2}}\right]}
$$

See also the dissertation by van der Kamp [4] for additional details of this alternate derivation.

References

[1] Gatheral, J. (2006). The Volatility Surface: A Practitioner's Guide. New York, NY: John Wiley \& Sons.
[2] Dupire, B. (1994). "Pricing With a Smile." Risk 7, pp. 18-20.
[3] Derman, E., Kani, I., and M. Kamal (1996). "Trading and Hedging Local Volatility." Goldman Sachs Quantitative Strategies Research Notes.
[4] van der Kamp, Roel (2009). "Local Volatility Modelling." M.Sc. dissertation, University of Twente, The Netherlands.

