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The derivation of local volatility is outlined in many papers and textbooks
(such as the one by Jim Gatheral [1]), but in the derivations many steps are left
out. In this Note we provide two derivations of local volatility.

1. The derivation by Dupire [2] that uses the Fokker-Planck equation.

2. The derivation by Derman et al. [3] of local volatility as a conditional
expectation.

We also present the derivation of local volatility from Black-Scholes implied
volatility, outlined in [1]. We will derive the following three equations that
involve local volatility � = �(St; t) or local variance vL = �2:

1. The Dupire equation in its most general form (appears in [1] on page 9)
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�
� rTC: (1)

2. The equation by Derman et al. [3] for local volatility as a conditional
expected value (appears with qT = 0 in [3])
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3. Local volatility as a function of Black-Scholes implied volatility, � =
�(K;T ) (appears in [1]) expressed here as the local variance vL
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where w = �(K;T )2T is the Black-Scholes total implied variance and y =

ln K
FT
where FT = exp

�R T
0
�tdt

�
is the forward price with �t = rt�qt (risk free

rate minus dividend yield). Alternatively, local volatility can also be expressed
in terms of � as
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Solving for the local variance in Equation (1), we obtain

�2 = � (K;T )
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: (4)

1



If we set the risk-free rate rT and the dividend yield qT each equal to zero,
Equations (1) and (2) can each be solved to yield the same equation involving
local volatility, namely

�2 = � (K;T )
2
=

@C
@T

1
2K

2 @2C
@K2

: (5)

The local volatility is then vL =
p
�2(K;T ): In this Note the derivation of

these equations are all explained in detail.

1 Local Volatility Model for the Underlying

The underlying St follows the process

dSt = �tStdt+ �(St; t)StdWt (6)

= (rt � qt)Stdt+ �(St; t)StdWt:

We sometimes drop the subscript and write dS = �Sdt + �SdW where � =
�(St; t). We need the following preliminaries:

� Discount factor P (t; T ) = exp
�
�
R T
t
rsds

�
:

� Fokker-Planck equation. Denote by f(St; t) the probability density func-
tion of the underlying price St at time t. Then f satis�es the equation

@f

@t
= � @

@S
[�Sf(S; t)] +

1

2

@2

@S2
�
�2S2f(S; t)

�
: (7)

� Time-t price of European call with strike K, denoted C = C(St;K)

C = P (t; T )E
�
(ST �K)+

�
(8)

= P (t; T )E
�
(ST �K)1(ST>K)

�
= P (t; T )

Z 1

K

(ST �K)f(S; T )dS:

where 1(ST>K) is the Heaviside function and where E [�] = E [�jFt]. In the
all the integrals in this Note, since the expectations are taken for the underlying
price at t = T it is understood that S = ST ; f(S; T ) = f(ST ; T ) and dS = dST :
We sometimes omit the subscript for notational convenience.

2 Derivation of the General Dupire Equation (1)

2.1 Required Derivatives

We need the following derivatives of the call C(St; t).
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� First derivative with respect to strike

@C

@K
= P (t; T )

Z 1

K

@

@K
(ST �K)f(S; T )dS (9)

= �P (t; T )
Z 1

K

f(S; T )dS:

� Second derivative with respect to strike

@2C

@K2
= �P (t; T ) [f(S; T )]S=1S=K (10)

= P (t; T )f(K;T ):

We have assumed that lim
S!1

f(S; T ) = 0:

� First derivative with respect to maturity�use the chain rule

@C

@T
=

@C

@T
P (t; T )�

Z 1

K

(ST �K)f(S; T )dS + (11)

P (t; T )�
Z 1

K

(ST �K)
@

@T
[f(S; T )] dS:

Note that @P@T = �rTP (t; T ) so we can write (11)

@C

@T
= �rTC + P (t; T )

Z 1

K

(ST �K)
@

@T
[f(S; T )] dS: (12)

2.2 Main Equation

In Equation (12) substitute the Fokker-Planck equation (7) for @f
@t at t = T

@C

@T
+ rTC = P (t; T )

Z 1

K

(ST �K)� (13)�
� @

@S
[�TSf(S; T )] +

1

2

@2

@S2
�
�2S2f(S; T )

��
dS:

This is the main equation we need because it is from this equation that the
Dupire local volatility is derived. In Equation (13) have two integrals to evaluate

I1 = �T

Z 1

K

(ST �K)
@

@S
[Sf(S; T )] dS; (14)

I2 =

Z 1

K

(ST �K)
@2

@S2
�
�2S2f(S; T )

�
dS:

Before evaluating these two integrals we need the following two identities.

3



2.3 Two Useful Identities

2.3.1 First Identity

From the call price Equation (8), we obtain

C

P (t; T )
=

Z 1

K

(ST �K)f(S; T )dS (15)

=

Z 1

K

ST f(S; T )dS �K
Z 1

K

f(S; T )dS:

From the expression for @C
@K in Equation (9) we obtainZ 1

K

f(S; T )dS = � 1

P (t; T )

@C

@K
:

Substitute back into Equation (15) and re-arrange terms to obtain the �rst
identity Z 1

K

ST f(S; T )dS =
C

P (t; T )
� K

P (t; T )

@C

@K
: (16)

2.3.2 Second Identity

We use the expression for @2C
@K2 in Equation (10) to obtain the second identity

f(K;T ) =
1

P (t; T )

@2C

@K2
: (17)

2.4 Evaluating the Integrals

We can now evaluate the integrals I1 and I2 de�ned in Equation (14).

2.4.1 First integral

Use integration by parts with u = ST � K;u0 = 1; v0 = @
@S [Sf(S; T )] ; v =

Sf(S; T )

I1 = [�T (ST �K)ST f(S; T )]
S=1
S=K � �T

Z 1

K

Sf(S; T )dS

= [0� 0]� �T
Z 1

K

Sf(S; T )dS:

We have assumed lim
S!1

(S �K)Sf(S; T ) = 0. Substitute the �rst identity (16)
to obtain the �rst integral I1

I1 =
��TC
P (t; T )

+
�TK

P (t; T )

@C

@K
: (18)
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2.4.2 Second integral

Use integration by parts with u = ST �K;u0 = 1; v0 = @2

@S2

�
�2S2f(S; T )

�
; v =

@
@S

�
�2S2f(S; T )

�
I2 =

�
(ST �K)

@

@S

�
�2S2f(S; T )

	�S=1
S=K

�
Z 1

K

@

@S

�
�2S2f(S; T )

�
dS

= [0� 0]�
�
�2S2f(S; T )

�S=1
S=K

= �2K2f(K;T )

where �2 = �(K;T )2. We have assumed that lim
S!1

@
@S

�
�2S2f(S; T )

	
= 0.

Substitute the second identity (17) for f(K;T ) to obtain the second integral I2

I2 =
�2K2

P (t; T )

@2C

@K2
: (19)

2.5 Obtaining the Dupire Equation

We can now evaluate the main Equation (13) which we write as

@C

@T
+ rTC = P (t; T )

�
�I1 +

1

2
I2

�
:

Substitute for I1 from Equation (18) and for I2 from Equation (19)

@C

@T
+ rTC = �TC � �TK

@C

@K
+
1

2
�2K2 @

2C

@K2

Substitute for �T = rT � qT (risk free rate minus dividend yield) to obtain the
Dupire equation (1)

@C

@T
=
1

2
�2K2 @

2C

@K2
+ (rT � qT )

�
C �K @C

@K

�
� rTC:

Solve for �2 = �(K;T )2 to obtain the Dupire local variance in its general form

�(K;T )2 =
@C
@T + qTC + (rT � qK)K

@C
@K

1
2K

2 @2C
@K2

Dupire [2] assumes zero interest rates and zero dividend yield. Hence rT =
qT = 0 so that the underlying process is dSt = �(St; t)StdWt: We obtain

�(K;T )2 =
@C
@T

1
2K

2 @2C
@K2

:

which is Equation (5).
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3 Derivation of Local Volatility as an Expected
Value, Equation (2)

We need the following preliminaries, all of which are easy to show

@
@S (S �K)

+ = 1(S>K)
@
@S1(S>K) = �(S �K)

@
@K (S �K)

+ = �1(S>K) @
@K1(S>K) = ��(S �K)

@C
@K = �P (t; T )E

�
1(S>K)

�
@2C
@K2 = P (t; T )E [�(S �K)]

In the table, �(�) denotes the Dirac delta function. Now de�ne the function
f(ST ; T ) as

f(ST ; T ) = P (t; T )(ST �K)+:
Recall the process for St is given by Equation (6). By Itō�s Lemma, f follows
the process

df =

�
@f

@T
+ �TST

@f

@ST
+
1

2
�2TST

@2f

@S2T

�
dT +

�
�TST

@f

@ST

�
dWT : (20)

Now the partial derivatives are

@f

@T
= �rTP (t; T )(ST �K)+;

@f

@ST
= P (t; T )1(ST>K);

@2f

@S2T
= P (t; T )� (ST �K) :

Substitute them into Equation (20)

df = P (t; T )� (21)�
�rT (ST �K)+ + �TST1(ST>K) +

1

2
�2TS

2
T �(ST �K)

�
dT

+P (t; T )
�
�TST1(ST>K)

�
dWT

Consider the �rst two terms of (21), which can be written as

�rT (ST �K)+ + �TST1(ST>K) = �rT (ST �K)1(ST>K) + �TST1(ST>K)
= rTK1(ST>K) � qTST1(ST>K):

When we take the expected value of Equation (21), the stochastic term drops
out since E [dWT ] = 0. Hence we can write the expected value of (21) as

dC = E [df ] (22)

= P (t; T )E

�
rTK1(ST>K) � qTST1(ST>K) +

1

2
�2TS

2
T �(ST �K)

�
dT
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so that

dC

dT
= P (t; T )E

�
rTK1(ST>K) � qTST1(ST>K) +

1

2
�2TS

2
T �(ST �K)

�
. (23)

Using the second line in Equation (8), we can write

P (t; T )E
�
ST1(ST>K)

�
= C +KP (t; T )E

�
1(ST>K)

�
so Equation (23) becomes

dC

dT
= KP (t; T )rTE[1(ST>K)]� qT

�
C +KP (t; T )E

�
1(ST>K)

��
(24)

+
1

2
P (t; T )E

�
�2TS

2
T �(ST �K)

�
= �K(rT � qT )

@C

@K
� qTC +

1

2
P (t; T )E

�
�2TS

2
T �(ST �K)

�
where we have substituted � @C

@K for P (t; T )E[1(ST>K)]. The last term in the
last line of Equation (24) can be written

1

2
P (t; T )E

�
�2TS

2
T �(ST �K)

�
=

1

2
P (t; T )E

�
�2TS

2
T jST = K

�
E[�(ST �K)]

=
1

2
P (t; T )E

�
�2T jST = K

�
K2E[�(ST �K)]

=
1

2
E
�
�2T jST = K

�
K2 @

2C

@K2

where we have substituted @2C
@K2 for P (t; T )E[�(ST �K)]. We obtain the �nal

result, Equation (2)

@C

@T
= �K(rT � qT )

@C

@K
� qTC +

1

2
K2E

�
�2T jST = K

� @2C
@K2

:

When rT = qT = 0 we can re-arrange the result to obtain

E
�
�2T jST = K

�
=

@C
@T

1
2K

2 @2C
@K2

which, again, is Equation (5). Hence when the dividend and interest rate are
both zero, the derivation of local volatility using Dupire�s approach and the
derivation using conditional expectation produce the same result.

4 Derivation of Local Volatility From Implied
Volatility, Equation (3)

To express local volatility in terms of implied volatility, we need the three deriv-
atives @C

@T ,
@C
@K ; and

@2C
@K2 that appear in Equation (1), but expressed in terms of
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implied volatility. Following Gatheral [1] we de�ne the log-moneyness

y = ln
K

FT

where FT = S0 exp
�R T

0
�tdt

�
is the forward price (�t = rt � qt, risk free rate

minus dividend yield) and K is the strike price, and the "total" Black-Scholes
implied variance

w = �(K;T )2T

where �(K;T ) is the implied volatility. The Black-Scholes call price can then
be written as

CBS (S0;K;� (K;T ) ; T ) = CBS (S0; FT e
y; w; T ) (25)

= FT fN(d1)� eyN(d2)g

where

d1 =
ln S0K +

R T
0
(rt � qt) dt+ w

2p
w

= �yw� 1
2 +

1

2
w

1
2 (26)

and d2 = d1 �
p
w = �yw� 1

2 � 1
2w

1
2 .

4.1 The Reparameterized Local Volatility Function

To express the local volatility Equation (1) in terms of y, we note that the
market call price is

C(S0;K; T ) = C(S0; FT e
y; T )

and we take derivatives. The �rst derivative we need is, by the chain rule

@C

@y
=
@C

@K

@K

@y
=
@C

@K
K: (27)

The second derivative we need is

@2C

@y2
=

@

@y

�
@C

@K

�
K +

@C

@K

@K

@y
(28)

=
@2C

@K2
K2 +

@C

@y
;

since by the chain rule @A
@y =

@A
@K

@K
@y , so that

@
@y

�
@C
@K

�
= @2C

@K2
@K
@y =

@2C
@K2K. The

third derivative we need is

@C

@T
=

@C

@T
+
@C

@K

@K

@T
(29)

=
@C

@T
+
@C

@K
K�T

=
@C

@T
+
@C

@y
�T
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since K = S0 exp
�R T

0
�tdt+ y

�
so that @K

@T = K�T . Equation (28) implies

that
@2C

@K2
K2 =

@2C

@y2
� @C
@y
:

Now we substitute into Equation (1), reproduced here for convenience

@C

@T
=

1

2
�2K2 @

2C

@K2
+ �T

�
C �K @C

@K

�
@C

@T
� @C
@y
�T =

1

2
�2
�
@2C

@y2
� @C
@y

�
+ �T

�
C � @C

@y

�
which simpli�es to

@C

@T
=
vL
2

�
@2C

@y2
� @C
@y

�
+ �TC (30)

where vL = �2(K;T ) is the local variance. This is Equation (1.8) of Gatheral
[1].

4.2 Three Useful Identities

Before expression the local volatility Equation (1) in terms of implied volatility,
we �rst derive three identities used by Gatheral [1] that help in this regard. We
use the fact that the derivatives of the standard normal cdf and pdf are, using
the chain rule, N 0(x) = n(x)x0 and n0(x) = �xn(x)x0. We also use the relation

n(d1) =
1p
2�
e�

1
2 (d2+

p
w)

2

=
1p
2�
e�

1
2 (d

2
2+2d2

p
w+w)

= n(d2)e
�d2

p
w� 1

2w

= n(d2)e
y:

From Equation (25) the �rst derivative with respect to w is

@CBS
@w

= FT [n(d1)d1w � eyn(d2)d2w]

= FT

�
n(d2)e

y

�
d2w +

1

2
w�

1
2

�
� eyn(d2)d2w

�
=

1

2
FT e

y
h
n(d2)w

� 1
2

i
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where d1w is the �rst derivative of d1 with respect to w and similarly for d2.
The second derivative is

@2CBS
@w2

=
1

2
FT e

y

�
�n(d2)d2d2ww�

1
2 � 1

2
n(d2)w

� 3
2

�
(31)

=
1

2
FT e

yn(d2)w
� 1
2

�
�d2d2w �

1

2
w�1

�
=

@CBS
@w

��
yw�

1
2 +

1

2
w

1
2

��
1

2
yw�

3
2 � 1

4
w�

1
2

�
� 1
2
w�1

�
=

@CBS
@w

�
�1
8
� 1

2w
+
y2

2w2

�
:

This is the �rst identity we need. The second identity we need is

@2CBS
@w@y

=
1

2
FTw

� 1
2
@

@y
[eyn(d2)] (32)

=
1

2
FTw

� 1
2 [eyn(d2)� eyn(d2)d2d2y]

=
@CBS
@w

[1� d2d2y]

=
@CBS
@w

�
1

2
� y

w

�
where d2y = �w�

1
2 is the �rst derivative of d2 with respect to y. To obtain the

third identity, consider the derivative

@CBS
@y

= FT [n(d1)d1y � eyN(d2)� eyn(d2)d2y]

= FT e
y [n(d2)d1y �N(d2)� n(d2)d2y]

= �FT eyN(d2):

The third identity we need is

@2CBS
@y2

= �FT [eyN(d2) + eyn(d2)d2y] (33)

= �FT eyN(d2) + FT eyn(d2)w�
1
2

=
@CBS
@y

+ 2
@CBS
@w

:

We are now ready for the main derivation of this section.

4.3 Local Volatility in Terms of Implied Volatility

We note that when the market price C(S0;K; T ) is equal to the Black-Scholes
price with the implied volatility �(K;T ) as the input to volatility

C(S0;K; T ) = CBS(S0;K;�(K;T ); T ): (34)
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We can also reparameterize the Black-Scholes price in terms of the total implied
volatility w = �(K;T )2T andK = FT e

y. Since w depends onK andK depends
on y, we have that w = w(y) and we can write

C(S0;K; T ) = CBS(S0; FT e
y; w(y); T ): (35)

We need derivatives of the market call price C(S0;K; T ) in terms of the Black-
Scholes call price CBS(S0; FT ey; w(y); T ). From Equation (35), the �rst deriv-
ative we need is

@C

@y
=

@CBS
@y

+
@CBS
@w

@w

@y
(36)

= a(w; y) + b(w; y)c(y):

It is easier to visualize the second derivative we need, @
2C
@y2 , when we express the

partials in @C
@y as a; b; and c:

@2C

@y2
=

@a

@y
+
@a

@w

@w

@y
+ b(w; y)

@c

@y
+

�
@b

@y
+
@b

@w

@w

@y

�
c(y) (37)

=
@2CBS
@y2

+
@2CBS
@y@w

@w

@y
+
@CBS
@w

@2w

@y2
+

�
@2CBS
@w@y

+
@2CBS
@w2

@w

@y

�
@w

@y

=
@2CBS
@y2

+ 2
@2CBS
@y@w

@w

@y
+
@CBS
@w

@2w

@y2
+
@2CBS
@w2

�
@w

@y

�2
:

The third derivative we need is

@C

@T
=

@CBS
@T

+
@CBS
@w

@w

@T
(38)

= �TC +
@CBS
@w

@w

@T
:

Gatheral explains that the second equality follows because the only explicit
dependence of CBS on T is through the forward price FT , even though CBS
depends implicitly on T through y and w. The reparameterized Dupire equation
(30) is reproduced here for convenience

@C

@T
=
vL
2

�
@2C

@y2
� @C
@y

�
+ �TC:

We substitute for @C@T ;
@2C
@y2 ; and

@C
@y from Equations (38), (37), and (36) respec-

tively and cancel �TC from both sides to obtain

@CBS
@w

@w

@T
=

vL
2

"
@2CBS
@y2

+ 2
@2CBS
@y@w

@w

@y
+
@CBS
@w

@2w

@y2
+
@2CBS
@w2

�
@w

@y

�2
�@CBS

@y
+
@CBS
@w

@w

@y

�
: (39)
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Now substitute for @2CBS
@w2 ;

@2CBS
@w@y ; and

@2CBS
@y2 from the identities in Equations

(31), (32), and (33) respectively, the idea being to end up with terms involving
@CBS
@w on the right hand side of Equation (39) that can be factored out.

@CBS
@w

@w

@T
=

vL
2

@CBS
@w

"
2 + 2

�
1

2
� y

w

�
@w

@y
+

�
�1
8
� 1

2w
+
y2

2w

��
@w

@y

�2
+
@2w

@y2
� @w
@y

�
:

Remove the factor @CBS
@w from both sides and simplify to obtain

@w

@T
= vL

"
1� y

w

@w

@y
+
1

2

@2w

@y2
+
1

4

�
�1
4
� 1

w
+
y2

w

��
@w

@y

�2#
:

Solve for vL to obtain the �nal expression for the local volatility expressed in
terms of implied volatility w = �(K;T )2 T and the log-moneyness y = ln K

FT

vL =
@w
@T�

1� y
w
@w
@y +

1
2
@2w
@y2 +

1
4

�
� 1
4 �

1
w +

y2

w

��
@w
@y

�2� :
4.4 Alternate Derivation

In this derivation we express the derivatives @C
@K ;

@2C
@K2 ; and @C

@T in the Dupire
equation (1) in terms of y and w = w(y), but we substitute these derivatives
directly in Equation (1) rather than in (30). This means that we take derivatives
with respect to K and T , rather than with y and T: Recall that from Equation
(35), the market call price is equal to the Black-Scholes call price with implied
volatility as input

C(S0;K; T ) = CBS(S0; FT e
y; w(y); T ):

Recall also that from Equation (25) the Black-Scholes call price reparameterized
in terms of y and w is

CBS (S0; FT e
y; w(y); T ) = FT fN(d1)� eyN(d2)g

where d1 is given in Equation (26), and where d2 = d1�
p
w. The �rst derivative

we need is

@C

@K
=

@CBS
@y

@y

@K
+
@CBS
@w

@w

@K
(40)

=
1

K

@CBS
@y

+
@CBS
@w

@w

@K
:
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The second derivative is

@2C

@K2
= � 1

K2

@CBS
@y

+
1

K

@

@K

�
@CBS
@y

�
: (41)

+
@

@K

�
@CBS
@w

�
@w

@K
+
@CBS
@w

@2w

@K2

Let A = @C
@y for notational convenience. Then

@
@K

�
@C
@y

�
= @A

@K and

@

@K

�
@CBS
@y

�
=

@A

@K
(42)

=
@A

@y

@y

@K
+
@A

@w

@w

@K

=
@2CBS
@y2

1

K
+
@2CBS
@y@w

@w

@K
:

Similarly
@

@K

�
@CBS
@w

�
=
@2CBS
@y@w

1

K
+
@2CBS
@w2

@w

@K
: (43)

Substituting Equations (42) and (43) into Equation (41) produces

@2C

@K2
= � 1

K2

@CBS
@y

+
1

K

�
@2CBS
@y2

1

K
+
@2CBS
@y@w

@w

@K

�
(44)

+

�
@2CBS
@y@w

1

K
+
@2CBS
@w2

@w

@K

�
@w

@K
+
@CBS
@w

@2w

@K2

=
1

K2

�
@2CBS
@y2

� @CBS
@y

�
+
2

K

@2CBS
@y@w

@w

@K

+
@2CBS
@w2

�
@w

@K

�2
+
@CBS
@w

@2w

@K2
:

The third derivative we need is

@C

@T
=

@CBS
@T

+
@CBS
@y

@y

@T
+
@CBS
@w

@w

@T
(45)

= �TCBS +
@CBS
@y

�T +
@CBS
@w

@w

@T
;

again using the fact that @CBS@T depends explicitly on T only through FT : Now

substitute for @C@K ;
@2C
@K2 ; and @C

@T from Equations (40), (44), and (45) respectively
into Equation (4) for Dupire local variance, reproduced here for convenience.

�2 =
@C
@T � �T

�
CBS �K @C

@K

�
1
2K

2 @2C
@K2

:

13



We obtain, after applying the three useful identities in Section 4.2,

�2 =
�TCBS +

@CBS
@y �T +

@CBS
@w

@w
@T � �T

h
CBS �K

�
1
K
@CBS
@y + @CBS

@w
@w
@K

�i
1
2K

2
h
1
K2

�
@2CBS
@y2 � @CBS

@y

�
+ 2

K
@2CBS
@y@w

@w
@K +

@2CBS
@w2

�
@w
@K

�2
+ @CBS

@w
@2w
@K2

i :
Applying the three useful identities in Section 4.2 allows the term @CBS

@w to be
factored out of the numerator and denominator. The last equation becomes

�2 =

�
@w
@T + �TK

@w
@K

�
1
2K

2
h
2
K2 +

2
K

�
1
2 �

y
w

�
@w
@K +

�
� 1
8 �

1
2w +

y2

2w2

� �
@w
@K

�2
+ @2w

@K2

i : (46)

Equation (46) can be simpli�ed by considering deriving the partial derivatives
of the Black-Scholes total implied variance, w = �(K;T )2T . We have @w

@T =

2�T @�
@T +�

2, @w@K = 2�T @�
@K , and

@2w
@K2 = 2T

h�
@�
@K

�2
+� @2�

@K2

i
: Substitute into

Equation (46). The numerator in Equation (46) becomes

�2 + 2�T

�
@�

@T
+ �TK

@�

@K

�
(47)

and the denominator becomes

1 + 2K�T

�
1

2
� y

w

�
@�

@K
+ 2K2�2T 2

�
�1
8
� 1

2w
+
y2

2w2

��
@�

@K

�2
+K2T

"�
@�

@K

�2
+�

@2�

@K2

#
:

Replacing w with �2T everywhere in the denominator produces

1 + 2K�T

�
1

2
� y

�2T

�
@�

@K
+ 2K2�2T 2

�
�1
8
� 1

2�2T
+

y2

2�4T 2

��
@�

@K

�2
+K2T

"�
@�

@K

�2
+�

@2�

@K2

#

= 1 +K�T
@�

@K
� 2Ky

�

@�

@K
� K

2�2T 2

4

�
@�

@K

�2
+
K2y2

�2

�
@�

@K

�2
+K2�T

@2�

@K2

=

�
1� Ky

�

@�

@K

�2
+

"
1� 2Ky

�

@�

@K
+

�
Ky

�

@�

@K

�2#
: (48)

Substituting the numerator in (47) and the denominator in (48) back to Equa-
tion (46), we obtain

�2 + 2�T
�
@�
@T + �TK

@�
@K

��
1 + Ky

�
@�
@K

�2
+K�T

h
@�
@K �

1
4K�T

�
@�
@K

�2
+K @2�

@K2

i
14



See also the dissertation by van der Kamp [4] for additional details of this
alternate derivation.
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